Electrochemical deposition of polypyrrole nanolayers on discontinuous ultrathin gold films.

نویسندگان

  • D Mtsuko
  • A Avnon
  • J Lievonen
  • M Ahlskog
  • R Menon
چکیده

Ultrathin layers of polypyrrole (PPy) were electrochemically grown between microelectrodes on a Si/SiO(2) substrate. Conducting nanolayers of PPy are directly grown onto ultrathin discontinuous gold (Au) film between the microelectrodes, with thicknesses in the range 10-100 nm. The system therefore forms a novel (PPy/Au) nanocomposite conductor. Atomic force microscopy (AFM) imaging and conductivity measurements indicate that at all thicknesses a relatively uniform film is formed but with significant roughness that reflects the roughness of the metallic island layer. In PPy/Au films with thickness ∼10 nm, the small barriers around the gold islands dominate the conduction, and as the film thickness increases to 100 nm the intrinsic conductivity of highly doped PPy dominates the charge transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric study on electrochemical deposition of copper nanoparticles on an ultrathin polypyrrole film deposited on a gold film electrode.

Monoshaped and monosized copper nanostructured particles have been prepared by potentiostatic electrochemical deposition on an ultrathin polypyrrole (PPY) film, electrochemically grown on a Si(100) substrate sputter-coated with a thin gold film or gold-film electrode (GFE). The crystal size and the number density of the copper nanocrystals have been examined by varying several deposition parame...

متن کامل

Electrochemical thin film deposition of polypyrrole on different substrates

Polypyrrole is one of the important conductive polymers that are widely used in energy storage systems, biosensors and electronics. The electrochemical synthesis of polypyrrole has advantages of simple process, mass production and low cost. In this study, polypyrrole thin films were deposited on different electrode substrates by cyclovoltammetric (CV), galvanostatic and potentiostatic depositio...

متن کامل

Characterization of electrochemically deposited polypyrrole using magnetoelastic material transduction elements.

Magnetoelastic alloy films have been used as a working electrode in an electrochemical cell. This material allows magnetic interrogation of electrochemical deposition. This technique was used to monitor the electrochemical deposition of polypyrrole by multisweep (CV) and potentiostatic methods. Since the determination of the mass-sensitive magnetoelastic film's resonance frequency is based on m...

متن کامل

The role of unbound oligomers in the nucleation and growth of electrodeposited polypyrrole and method for preparing high strength, high conductivity films.

Polypyrrole is a material with immensely useful properties suitable for a wide range of electrochemical applications, but its development has been hindered by cumbersome manufacturing processes. Here we show that a simple modification to the standard electrochemical polymerization method produces polypyrrole films of equivalently high conductivity and superior mechanical properties in one-tenth...

متن کامل

Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2008